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ABSTRACT

A method is presented for the dysnamical analysis of complex struc-
tures subjected to a random environment. The excitations considered
are random motion of the base and multiple random loadings. Equa-
tions are developed for computing the response using generalized
parameters. Cross power spectral densities are used to account for
the correlation of the multiple random inputs. The main advantage

of this method is the capability of wide application.

An example is given illustrating the use of this method to determine
the response to random motion of the base, an acoustic field and

both excitations simultaneously.
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[ ANALYSTS OF COMPLEX STRUCTURES
SUBJECTED TO RANDOM EXCITATION

BY

and

|
' C. M. Fuller
|
i D. N. Roudebush

FNTRODUCTION

! The dynamic environment experienced by missile and space vehicles
!during static firing and flight are usually sufficiently severe to influence
[portions of the design. Because of the severity of this environment, an
!analytical method which will reliably predict the response to a random
‘environment must be available. Besides being useful in demonstrating that
ithe design is satisfactory, the analysis finds many applications in

fevaluating the data from vehicle flights and laboratory testing.

j The analysis presented here, determines the response of a complex
;structural system by superimposing the response of several natural modes.
'This modal approach is useful because it retains the generality required for

;application to a wide variety of structures. This paper presents and

'discusses the equations to be evaluated.
An example is given which illustrates the application of the method
for the cases where the excitation is random vibration of the base, an

acoustic field, and the two excitations simultaneously.

’TRANSFER FUNCTTIONS

The general differential equations of motion for a forced lumped

parameter system nay be written as given in reference 1.
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Where [M I, IB] ) [K ], and ’FI are the sectional mass, damping, stiffness,

and forcing matrices respectively.
Considering a solution of the form
| iwt
X(w,t) = [v ] e e (2)

for the homogeneous part of Equation (1) and substituting Equation (2) in
Equation (1) yields

il sls el o] fe] & = ps )

Using the property of orthogonality with respect to a weighting function of

eigenvectors to complete the similarity transformation yields
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The net effect of the similarity transformation is the diagonalization of
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the matrices, i.e., uncoupling of the matrices.

Let the forcing function take the form

o]= & [o] <Ot (9)

where

A is a scalar whose function is convenience when calculating transfer

functions or total response.

en is the phase angle to the reference phasor.




lere
X, is the motion of the base
Xi is the total motion of the ith degree of freedom
ii is the relative motion of the ith degree with the base motion
rforming the coordinate change, the equations of motion becomes
IM]{7<+Kb‘ + i[B] ,3<'|+ [KHEEI = 0 (16)
arranging Equation (16) gives

IM] 'il + i[BH3'(|+ [Kll'}?l: -’[Mlliébl (17)

The steady state portion of the forcing function, A (ﬁl, is found to be

ven by

ol -5 el ] f+) a9

Iu’ is a column matrix whose elements are the direction cosine between

the force vector and the degree of freedom.
nce the total response is given by
o 1]
H'(w) = _xb[YI(_w [u|+ i[ﬁ]+ [x])’ [Ly][Ml ’u‘ (19)

r a base input, X,, of unity Equation (19) yields the transfer function,

w), for base excitations.

Application of the method described begins with the calculation of a mass

trix [M] ,» @ stiffness matrix [K ], or an influence coefficient matrix,
]-1



Letting

6y (¢

then Equation (9) becomes

iwt

\p‘ = A‘—!;‘e (L
and Equation (4) becomes

(-w® lp]+ ilﬁ]+ [K]) ,clei“’t = A'Elei‘“t (1

lc\ - A(—E[H]+ i[5]+|x])'1|§l (1

o, corresponds to the modal response. Transfer functions H(w) or total
response H'(w) for all degrees of freedom are found by substituting Equatio
(13) into Equaticn (2) and retaining only the steady state portion of the
solution. The transfer function differs from the total response in that fo:

transfer functions the scalar A must be unity. This substitution yields
. 2 . -1 5
H'(w) = Al[y (<o I+ 44| +{x1) P (1
where

Ymn is the value of the desired response for a unit amplitude of the

nth mode.

For the case where the input force is motion of the base, the equations of
motion now must describe the motion relative to the base. Using a new

coordinate systems, defined by Equation (15).

T S (1




The method of achieving the structural matrix depends on the complexity
\of the problem, ranging from hand calculations for simple structures to
’analysis of statically indeterminent structures by digital computers. In
most practical applications the damping has little effect on the eigenvectors
}or eigenvalues and has been omitted in the calculation of eigenvalues and

| eigenvectors for the convenience of avoiding complex arithmetic.

The eigenvalues and eigenvectors for the equation

Cle ] -afz]y =0 (20)
| are computed. Using the eigenvectors as base vectors for a new coordinate
|
lsystem, the mass matrix is transformed to the generalized mass matrix, [ ]
The generalized stiffness matrix, [Kl , 18 related to the generalized mass

matrix by the Tollowing equation:

e ]= {2 ] [v] (21)

The transfer functions or total response is found by evaluating Equation (14)

or (10). 1In the case that A is unity, the result is a transfer function and

the type of response is determined by Y m

RESPONSE TO RANDOM ENVIROMMENTS

A linear multiple degree of freedom system with impulse response, hn(t),

transfer functions, Hn(w), and multiple random inputs, wn(t), can be

represented schematically as follows:

W, (t) ———= ny (), H(w) =

Wy (t) ————mt 0o (8), Hy(0) |

. . . ——»X(t)

o



The transfer function is defined in Reference 2 as

W) = 7 [P

/7l @] (22)
where

P'(t) is the input function

P°(t) is the output function

H(w) 1is the transfer function

F denotes the Fourier transformation

If the input function is an impulse function such that the Fourier

transform exists, then H(w) is given by

W) = F [ )] (23)

F [5(t)] = 1

The autocorrelation function is defined as

T
RO = P & ) ax(e) x(b ) (21)

From the convolution integral X(t) and X(t + T) are given by

x(t)

z / at Wj(t -4) hj(é) (25)

X(t +7)

zv{wdn%&+T—n)%(m




Combining Equations (24) and (25) yields

T 0
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| > S et e o nw (26)

'Rearranging the order of the integration of Equation (26) and noting that

the correlation of the input is defined as

T
R (r-a+t) = 4o 2 [T W (b - L) (e e T o) @D
yields
| ® -
e = 33 [ an@ ) e Fyen o) (28)
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’Assuming that the Fourier transform of R(T) exist, the power spectrum, ¢ (w)

is given by the following expression

' © ] © ‘ ©
l b (w) = f gr e’ EZf dghj((,) / dnh, () R(r -n +1)

(29)

r R wT
Expressing e as
t

SSARE S e-iw(‘r + 4 -m) Lmiwn eiwé (30)

i =

and substituting into Equation (29) yields
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If j £k, then ¢ jk(w) is the cross power spectrum of the instantaneous values
of the input time functions Wj(t) and W, (t). For the case where j = k,
¢jk(w) is the power spectrum of the input.

Having determined the transfer functions for the system and knowing the
power spectra and cross power spectra of the input, the power spectrum of
the output is then found by evaluating Equation (32) for the desired fre-

quency range.

CONCLUDING REMARKS

The main feature of this method of analysis is its versatility. For
the purpose of analysis, the required information consists of mass, damping,
and stiffness matrices which may be obtained in a large variety of methods.

If facilities are available, these parameters may be obtained experimentally.

Once the transfer functions have been computed, the choice of the type
of excitation to which the structure is subjected and the type of response

to be computed is nearly unrestricted.

This method has demonstrated its efficiency when used in conjunction
with digital computers. The experienced user has the capability of increased
accuracy by the use of more normal modes or increased efficiency by using

only the most significant normal modes when computing the total response.




EXAMPLE

To illustrate the foregoing method a loaded plate, shown in figure

l,was used as an example. The excitations considered were random

vibration of the base and an acoustic field impinging on the surface.

The influence coefficient matrix, for the lumped parameter model
shown in figure 2, was calculated using the Douglas Aircraft
Compeany Redundant Force Computer Program given in references 3 & 4 .
Having formed the dynamical metrix from the mass matrix and influ-
ence coefficient matrix, the eigenvalues and eigenvectors for the
dynamical equation were then calculated. The first nine natural

frequencies for the 4l degree of freedom system are shown in Table 1.

Transfer functions were calculated assuming the damping for each
mode to be 2% of the critical damping value. Charts 1, 2, and 3
show the transfer function for motion of mass Ml normal to the plane
of the plate, parallel to the width and parallel to the length
respectively, when the excitation is motion of the base normal to
the plane of the plate. Chart 4, 5, and 6 show functions of M, for
normal incidence of the fluctuating pressure. The fluctuating
pressure was defined to be perfectly correlated over the entire

surface of the plate.

The responses of Ml in the three axes of the plate for a 0.1 ge/cps
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random input at the basc ere shown in Charts 7, 8, and 9. Charts
10, 11, and 12 show the response of M1 to a 161 db acoustic field
whose spectrum is such that the fluctuating pressure is .001 (psi)g/

cps over the frequency range of interest.

Charts 13, 14, and 15 show the respohse of M1 in the respective
directions to the two excitations acting simultaneously and defined

to be unrelated.
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STRUCTURAL PLATE WITH MOUNTED COMPONENTS
FIGURE 1

PHYSICAL DATA
ALUMINUM HONEY COMB

3FT X6 FT X L4IN./O.TIN,
M) =8 LBS
My = 24 LBS
M3 = 20 LBS

LUMPED PARAMETER IDEALIZATION
FIGURE 2
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TABLE 1

NATURAL FREQUENCIES

MODE NUMBER

= O v

FREQUENCY -~ CPS

257.03k
267.266
292,780
348,127
393,383
418,646
483,426
605.785
854,014
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POWER SPECTRAL DENSITY (G2/CPS)
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RESPONSE IN X DIRECTION TO ACOUSTIC EXCITATION

10.0

8

[

4

2

1.0

-

6

) |

2 “
3 \
& 0. ‘
N 8
e s |
: . |
3 L]
z
w
a
a 2
Z
o
o
9 001
[ % ]
[,

6

a

z (

0.001

8 ‘

6 \

. \

2 \

0.0001 \’/

0 200 400 600 800 1000 1200

FREQUENCY
CHART 12




SPECTRAL DENSITY (G2/CPS)

RESPONSE IN Z DIRECTION TO COMBINED EXCITATION

100.0

|\

0.0
200 400 600 800

FREQUENCY (CPS)

1000

CHART 13.

33



SPECTRAL DENSITY (G2/CPS)

RESPONSE IN THE Y DIRECTION TO COMBINED FORCING

10.0
8
6
4
2
1.0
8
6
2

0.1 \

s |

6 \

) \

2 v \J
0.01
8
6
4
0.001
8
6
a4
2
0.0001
0 200 400 600 800 1000 1200 1400

FREQUENCY (CPS)

CHART 4.




SPECTRAL DENSITY (GZ/CPS)

(=]
Py

0.001

L N

RESPONSE IN THE X DIRECTION TO COMBINED FORCING

N
{\\_/
200 400 600 800 1000 1200 1400

FREQUENCY (CP$)

CHART 15.

35



